Notes \& Observations on M01a

History of M01 Group Stations

The M01 set of Morse stations have been active for a very long time \& pre-date the original ENIGMA group that came into existence in 1993, \& who were responsible for the classification of Number Stations we still use today.

The M01 group consists of M01, M01a \& M01b. M01 \& M01b use a very similar format \& both have fixed schedules that have been in use since the inception of the ENIGMA group. There are however some differences between these two stations \& these can be compared using the Active Stations List, available on the ENIGMA 2000 website. The stations are believed to be operated by the Russian Navy.

M01 Has a long-standing, rigid schedule of messages sent at 1800 z \& 2000 z on Mondays / Thursdays, 1500 z on Saturday \& 0700 z on Sundays. Frequencies \& calls change every few months on a rotating schedule that repeats yearly.

M01b As with M01, has long-standing schedules on Mondays, Thursdays \& Fridays. Also has a rotating schedule of frequency \& call changes.
If we look at M01a, the subject of this article, we can see that it is very much the odd one out in that there are a number of different formats in use and, with the exception of the message formats, they all appear to be very different from those used by M01 or M01b. M01a uses both machine \& hand-sent Morse.

Originally, ENIGMA had four sub-categories listed under the M01 definition - M01a, b, c \& d. These definitions of the various sub-categories are taken from ENIGMA's Morse Station Profiles document - January 2005 Update.

M01A End of Month transmissions, the last Thursday and Saturday of each Month.
These transmissions are an entirely different format to the normal M01 but they can vary each time. Suggest listening to them to hear the format. Some of these have been logged at times other than the EOM and at the same time as M01 was transmitting. Sending was not the usual high quality of M01. (Possible operator practice sessions?)

These transmissions ceased to be at the end of the month from April 2002.
They have been heard but not at a regular time, day, or frequency. It is a matter of luck to find them.
M01B Hand sent. These are sent to individual IDs and the frequencies
M01C A common format of these is listed. Several other formats exist. If a message is sent it is nearly always 10 groups.
3853853858429784297 Repeated 8 times
30 Second pause
3853853858665286652 Repeated 8 times
Can be any number of these, usually machine sent, ending is hand sent.
385385385000
These can be on at any time and do not use the normal M01 frequencies so are very difficult to find.
Logged on 14 July 1999 on 9143 . A long transmission from 1045 to 1133, with 2 messages of 30 and 33 groups.
M01D A new variation heard on 29 September 1999 on 5730 at 0700
Also on 30 September 1999 on 5730 at 06000700 and 0800
Similar to M01C but all Auto sent
Call up was 331
Last group of message was random
Here is an example of the end of month transmissions. Between each line of the message there is a pause of anything from 5 to 170 Seconds. It appears that it is waiting for a reply from outstations in these pauses. None of these replies have ever been logged. The message, although there is not always one sent is unusual, in that the groups are only sent once. The call up usually uses the ID in use but has been known to start 333 .

4634634635048150481 (This can be repeated up to 6 times)
1115196251962 (This can be repeated up to 6 times)
3335102851028
0201823
111999
$55837=37 x 5 f=55837$
1115117953065 (Repeat of groups 15 and 25)
111000
As can be seen from the above, the M01a definition referred specifically to regular scheduled transmissions that were heard on the last Thursday \& Saturday of each month, but as we can also see, from April 2002 these regular transmissions ceased were said to be appearing more or less randomly, with time, day \& frequency all variable.

This ending of the M01a scheduled transmissions combined with what also appeared to be similarly random transmissions from M01c \& M01d presented a problem. With incoming reports, while it was easy enough to identify the M01 \& M01b transmissions, the remaining logs proved to be difficult, if not impossible to fit with certainty into any one of the sub-categories. When comparing the contents of logs against the definitions it became clear that there was a good deal of overlap \& that elements from several of the sub-definitions could be found in many of the logs.

With the cessation of the regular end of month transmissions there was no way of determining whether a report was an M01a transmission or one of the other subcategories. Added to this was the fact that most reports were only partial logs, having been found in progress by monitors because of the random nature of the transmissions.

After some discussion, it was decided to revise the M01 group definitions. M01 \& M01b would remain unchanged, but all other variants would in future be covered by the M01a sub-category. This was implemented in February 2016.

M01a - Content

As already stated M01a has very different content from that received from M01 or M01b \& can present itself in a number of different formats. Here are a few examples that have been logged by members of the ENIGMA 2000 Group over the last two years;

5209	0742z	28 Mar	$\begin{aligned} & 260(x 3) 94930(x 2) \\ & 260(x 3) 94930(x 2) \\ & 260(x 3) 93552(x 2) \end{aligned}$
4683	1438z	04 Apr	$\begin{aligned} & 33307 \\ & 33311 \\ & 33315 \\ & 33319 \\ & 33325 \\ & 111000 \\ & 111000 \end{aligned}$
4603	1442z	04 Apr	$\begin{aligned} & 33348928 \\ & 33346328 \\ & 444 \\ & 333000 \\ & 333000 \\ & 111333030 \\ & 812 \end{aligned}$
4830	1446z	04 Apr	$\begin{aligned} & 111=80849 \\ & 111000 \end{aligned}$
4803	1450z	04 Apr	$\begin{aligned} & 104 \text { (x3) } \\ & 90038 \text { (x2) } \\ & 111 \\ & 111333999 / 673229654324467334480 \\ & 45580 / 31005000 \end{aligned}$
2803	0420z	26 Sep	$\begin{aligned} & 633(x 3) 72826(x 2) \\ & 33372682 \\ & 04001 \\ & 333111 \\ & 0202730 \\ & 111000 \end{aligned}$
3192	1803z	07 Sep	$\begin{aligned} & 111=753208147207034 \\ & 111000 \end{aligned}$
3378	0453z	08 Sep	312 (x3) 111000
3389	0523z	26 Sep	$\begin{aligned} & 33320 \\ & 111000 \end{aligned}$
3768	1520 z	08 Sep	$\begin{aligned} & 133(x 3) 90623(x 2) \\ & 111000 \end{aligned}$
4488	1144 z	08 Sep	$\begin{aligned} & 361(x 3) \\ & 361 \text { (x3) } \\ & 361 \text { (x3) } 87536(x 2) \end{aligned}$
4517	0713z	26 Sep	$\begin{aligned} 37834= & 646249278850127201532457760900017698603818422746537 \\ & 46384922752814776943733908391338310153425445726530 \\ & 39725034121966055329036095805242751344521849691830 \\ & 18959102284399923835=37834 \end{aligned}$
			111000
3882	1553z	18 Mar	$\begin{aligned} & 598(x 3) 79653(x 2) \\ & 33346 \\ & 33337 \quad 33337 \\ & 111000 \end{aligned}$
4905	1214 (IP) - 1216z	19 Mar	M01a Training $94013246480461354798740524984013498654123687046521=34710000$ Groups, symbol, DK, GC; repeated twice. Sent slowly with bad timing, broken groups and mistakes.
4484	1836z	26 Mar	$\begin{aligned} & 3336910733369107 \\ & 111999 \\ & 32543=49451009632552944039003959767240428664786248080438 \\ & 07934800895526284365129293364764385588172779680627 \\ & 95925666168073043979652485683508630078750136036747 \\ & 556557834823428601696207545916652752874704096 \\ & 931109376578085=32543 \quad 000 \end{aligned}$

As can be seen from these examples, the formats are quite formal. No operator 'chat', acknowledgements or ' Q ' codes are used as usually seen on network traffic, \& no call-up preamble used. While much remains a mystery, there are a number of clues that can tell us a little about the station.

The association with the M01 group is evident by the use of three zeros at the end of messages or traffic, (using the short zero for both this \& in messages). The format of the messages also resemble those of M01 / M01b, but using only single groups \& likewise a single Decode Key \& Group Count at to both start \& end messages.

One characteristic of the traffic are the pauses between each 'section' of text. These can range from a few seconds to a number of minutes. As stated in the above definition of M01d, 'it appears that it is waiting for a reply from outstations in these pauses. None of these replies have ever been logged.' This is very much the impression formed when listening to M01a for any length of time.

Repeated Groups

Looking through the logs will throw up examples where, having sent a message, the station will next repeat one or two of the groups from that message, seemingly in response to a request from an outstation. In this example below, we can see that groups $04 \& 11$ are repeated. The station then closes the transmission with 111 000.

5743 1435z $\quad 16$ Jun 111999
111999
$12015=56754345238796775654543239805612354786568970912354$
$7865654223879097867623423=12015$
$111=7565478656=$
111000
In this next example only a single group is repeated, in this case group 12 ;
50431219 (IP) - $1317 \mathrm{z} \quad 18 \mathrm{Jul} \quad 28130=28878855701229052500421004966260860290224059562210$ 98656399489265052148784216472459011894436485985320 93629414196386448365647116304314998446821419456537 = 28130000

11133339948
Finally, this example not only repeats part of the message, but also clearly states the group numbers of the repeated section as $=0309=$ before ending the transmission with 000 .
$5473 \quad 1051$ (IP) - 1057z 20 Jul 111999
$111020=\mathbf{0 3} \mathbf{0 9}=77079184383935883897029073990943897000$

Call signs

The M01d definition also states that 'The call up usually uses the ID in use but has been known to start 333'. Here are some logs where the three-figure call signs are used showing examples of the different number sequences that are used. As you will see, one of the examples features a full message. Again, these are taken from logs submitted to ENIGMA 2000 over the last two years.

It is difficult to be sure of the function of these various sequences. As we have seen from the section above, there are situations where individual groups from a message are resent, so this is a possibility. It could also be that these five-figure groups represent a coded group in their own right or have some entirely different use. We simply don't have sufficient information to determine their purpose.

7692	0539-0549z	13 Mar	958 (x3) 47436 (x3) Rpt 5 min. 958 (x3) 49337 (x3) Rpt 5 min.
9421	0620-0629z	13 Mar	135 (x3) 60479 (x3) Rpt 5 min
5182	1051 (IP) - 1059z	11 Jul	781 (x3) 3180131801 (Rx9)
			781 (x3) 31603316037
			817 (x3) 8131603318017
			817 (x2) 813160331603
			781 (x3) 3160331603 (Rx2) (Monitored until 1230z. NRH)
5080	0916 (IP) - 0925z	12 Jul	942 (x3) 62940 (x2)
			942 (x3) 62050 (x2) (Rx3)
			942 (x2) 5
			123456789
			111000
5347	1415 (IP) - 1426z	13 Jul	134 (x3) 20160 (x2)
			22212

111999
$01125=36557965440454112685576694567734464975323487604645$ (Single grps) 45677344648777734876046457543212345450874570689750 $3446497532123458567436557=01125000$

Triplet Codes

One very prominent feature of M01a output is the liberal use of three-figure codes throughout the transmission. While it is not possible to determine the meaning of the various codes, where \& when they are used could suggest some possible meaning to one or two of the codes.

From observation the codes logged are;

111	111000	111333	111999
222			
333	333000		
444			
999			

111 can be either a stand-alone code or followed by traffic. E.G. 1113990631906 (Repeated several time)

111333 can also be either as stand-alone sequence or with traffic. E.G. 11133339948 - Also frequently associated with two-figure codes. E.G. 33320
111999 is always seen as a stand-alone code.
333 is sent either as a stand-alone code of followed by traffic. E.G. 333 48928. It is also frequently followed by two-figure codes. E.G. 333093330102 444 is always seen as a stand-alone code.

999 is always seen as a stand -alone code
111000 is the sequence used only at the end of a transmission. Although there have been instances of this being omitted, it is usually the sign-off of the station.

Schedule

M01a Schedule by Days of Week

Tuesday	Wednesday	Thursday	Friday
0530z 9411 kHz	0530z 9129kHz 9192kHz **	0530z 9129kHz 9192kHz **	$0530 \mathrm{z} \quad 9411 \mathrm{kHz}$
0620z $10233 \mathrm{kHz} \mathbf{1 0 2 3 5 k H z}$ **	0540z 7692kHz	0540z 7692kHz	0620z $10233 \mathrm{kHz} \mathrm{10235kHz}$ **
$0630 \mathrm{z} \quad 9447 \mathrm{kHz}$	0620z 9421kHz*	0620z 9421 kHz *	0630 z 9447kHz
0710z 10651 kHz	0630z 8111kHz	0630z 8111kHz	0710 z 10651kHz
0720z 9151 kHz	0710z 9175 kHz	0710z 9175kHz	$0720 \mathrm{z} \quad 9151 \mathrm{kHz}$

M01a Fregs vs Day/Time in UTC (With Known IDs)

Freq [kHz]	SUN	MON	TUE	WED	THU	FRI	SAT	Ident 01	Ident 02
7692				0540	0540			536	
8111				0630	0630			902	536
91299192 **				0530	0530			498	
9151			0720			0720		728	
9175				0710	0710			146	208
9411			0530			0530			751
9421				0620*	0620*				135
9447			0630			0630		143	796
1023310235 **			0620			0620		354	458
10651			0710			0710		297	358

All monitoring of M01a using Twente SDR. All best received in Western Europe with the exception of 9421 kHz

* Not audible in Western Europe, under Greek B/C station. Best copied in Eastern Europe.
** Alternative frequencies shown in bold. One or the other Frequency is used at that time.
In addition to the schedule shown above, there are also several days each month given to what is believed to be M01a training. These sessions take place on frequencies between $3 \mathrm{MHz} \& 6 \mathrm{MHz}$

Data Bursts

Mixed in with the Morse transmissions are numerous short digital data bursts associated with M01a. These appear just before the beginning of a transmission \& also before the continuation of a transmission following a pause or period of silence.

Here is an example showing the data burst followed by the commencement of the M01a transmission;

Examination of a number of these data bursts has shown that they are not identical \& that there are variations in the length of some pulses as well as with the number of pulses sent.

Here are three examples that clearly show the differences \& variations between data bursts;

If we look at the similarities between the various data bursts it can be seen they do seem to consist of the same basic elements, that is three short pulses, a long pulse, a number of short pulses \& ending with a long pulse, (although that is absent from one of the samples obtained).

Differences can be seen in the length of the longer pulses \& also the number of short pulses that make up the central part of the data burst. In the last example shown above it can be seen that there is also a long pulse at the start of the data burst, although this was not present on the remainder of the examples examined.

There are also variations in the time between the data burst being transmitted \& the start of the M01a Morse with no two samples having the same time delay before the start of the Morse. However, it does seem that the data bursts are connected to the Morse transmissions as they consistently appear prior to the start of the Morse activity, whether that is the start of a transmission or following a pause in the Morse transmission.

The construction of the data bursts indicates that they carry no intelligent data \& that is all we can say with certainty. The purpose of these is unknown \& can only be surmised. However, the construction of the data bursts would seem to suggest some form of control codes, perhaps for remote switching purposes.

Is M01a an Automated System?

Although M01a does use some manual Morse, a large part of their output is automated consisting of repetitive sequences, often with long periods of silence between these active sessions. It has also been noted that these sequences can start or end part-way through a sequence \& even part-way through a Morse character. Whoever these sequences are intended for could have an operator on continuous listening watch but given the nature of the sequences it is also possible that the system is automated to allow for unattended remote monitoring of the signals.

While this could be achieved today using computers, Russia is not known for being the most up to date with their equipment \& will often utilise older systems \& equipment, particularly where a low-tech solution will suffice.

Could these data bursts be used to remotely activate receive systems, perhaps using teleprinters or other recording equipment to log the output from the M01a sessions? Could the variations noted in the data bursts be used to selectively activate an individual remote station?

Although all the examples examined had a data burst prior to the Morse there was only one that had an equivalent burst at the end of the Morse transmission, so if used for remote switching, there only appears to be a command for switching the system on \& not for deactivating it once the transmission has finished.

FSK

In addition to the Morse \& data burst content, following a training Morse session an FSK, (Frequency Shift Keying), transmission was logged around five minutes after a training session had ended on 4920 kHz . While this may be unrelated to the M01a operation it has been identified as encrypted 75 bd with a 250 Hz shift, which is a known standard used by the Russian military.

This article has been compiled by the ENIGMA 2000 Morse Team.
Thanks to those involved \& particularly to Edd Smith for the huge effort he has put into monitoring, transcribing \& analysing M01a transmissions \& on whose work \& recordings this article is based.

This article first appeared in the ENIGMA 2000 Newsletter in two-parts. Issue 112 - May 2019 \& Issue 113 - July 2019

